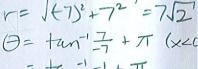
Find the zeros of
$$r = 5 + 10\cos\theta$$
.

$$5 + |0\cos\theta| = 0$$

$$\cos\theta = -\frac{1}{2}$$

SCORE: /4 PTS

Test $r = 3 - 5\sin\theta$ for symmetry over the polar axis. State your final conclusion clearly. SCORE: /6 PTS (r,-0): r=3-5sm(-0),(1) r=3+5 smQ(1) $(-r, \pi-\theta): -r = 3-5 \text{ sm}(\pi-\theta), (5)$ $-r = 3-5 \text{ [sm}\pi\cos\theta - \cos\pi\sin\theta]$ -r=3-5sm0 r=-3+5sm0,0 NO CONCLUSION L WRONG TO SAY "NOT SYMMETRIC"



The point with rectangular co-ordinates (0, -8) has polar co-ordinates (

[c]

[a]

The point with rectangular co-ordinates
$$(-7, 7)$$
 has polar co-ordinates $(7\sqrt{2}, 34)$

SCORE:

(Both parts of your answer must be **positive**.)

The point with polar co-ordinates
$$(6, \frac{5\pi}{3})$$
 has rectangular co-ordinates $(3, -3\sqrt{3})$.

(Both parts of your answer must be positive.)

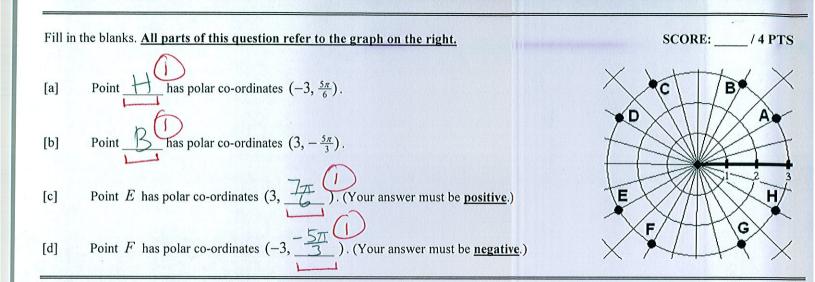
Convert the polar equation
$$r = \frac{6}{2 - 3\sin\theta}$$
 to rectangular form.

SCORE: ____/5 PTS

Simplify your answer so that there are no radicals, complex fractions, fractional exponents nor negative exponents.

$$2r-3r\sin\theta = 6,0$$

$$2r-3y=6,0$$


$$2r=3y+6$$

$$2\sqrt{x^2+y^2} = 3y+6$$

$$4(x^2+y^2) = (3y+6)^2$$
2

$$4x^{2}+4y^{2}=9y^{2}+3by+3b$$

$$4x^{2}-5y^{2}-3by-3b=0$$

Convert the rectangular equation xy = 8 to polar form. Simplify your answer.

SCORE: _____ / 5 PTS